

Continuous PRECICE® AMP Deaminase Assay Kit:

User manual - Ref: # K0709-05-1

For measurement of 5'-adenosine monophosphate deaminase (AMPD, AMPDA) activity

I. Introduction

PRECICE* **AMPD Assay Kit** is the first non-radioactive and continuous assay designed to measure AMP-deaminase content in samples. This enzymatic assay is based on a reaction involving Inosine Monophosphate Dehydrogenase (IMPDH).

The principle of the assay is based on the coupling of the following enzymatic reactions:

- (1) In the presence of AMP, AMP Deaminase (AMPD) enzyme catalyzes the formation of IMP;
- (2) In the presence of NAD, IMP is immediately oxidized by a highly active IMPDH in the presence of NAD with simultaneous formation of NADH₂ directly monitored spectrophotometrically at 340 nm.

The assay is developed for measuring AMP deaminase activity *in vitro* or in cell lysates. *For maximal accuracy,* the assays with cell lysates are run **with and without AMP substrate** in parallel. The absorbance rate observed in the absence of Pribose is used as blank and is subtracted from the absorbance rate measured in its presence.

II. Equipments required

- 1) Plate agitator
- 2) Plate reader fitted with a filter 340nm (ex. Labsystems iEMS Reader MF (Thermo), Epoch (BioTec); PerkinElmer.

IMPORTANT: The following instructions are given to measure the activity of AMPD enzyme, in a range allowing this measurement by spectrophotometry as described here below. NovoCIB does not guarantee the use of its PRECICE® AMPD Assay Kit or of one or several of its components, in other conditions than those described in this user manual and/or for other purpose than R&D.

III. Kit contains 1 set of tubes to prepare 5mL of reaction mixture:

Each set contains:

- Cofactor 1 (powder);
- Cofactor 2 (powder);
- AMP (powder);
- IMPDH enzyme, lyophilized;
- Reaction buffer (glass vials, 5mL);
- **IMP** (positive control for IMPDH)
- Purified bacterial AMPD-deaminase (AMPDA, positive control)
- transparent 96-well plate (round-bottom 96-well plate Corning, Costar®, ref. 3797)

The kit is shipped at room temperature since reagents and lyophilized enzymes are stable at room temperature up to 2 weeks. However, for long time storage the kit should be frozen upon arrival and stored at -20°C.

IV. Preparation of 5mL of "Reaction mixture"

IMPORTANT: Use only autoclaved Milli-Q water to inactivate ubiquitous phosphatases and to avoid nucleootides dephosphorylation

- 1. Shortly spin the tubes before opening to recover the powder at the bottom;
- 2. Thaw "Reaction buffer" (do not heat); equilibrate at room temperature;
- 3. Quantitatively transfer "Cofactor 1", "Cofactor 2" and "IMPDH" to 5mL of "Reaction buffer".

To do so:

- -pipet 1ml of "Reaction buffer" to each of 3 tubes and mix them by inverting or pipetting up and down until the powder dissolved.
- transfer by pipetting the content of three tubes back into a vial "Reaction buffer".
- repeat to be sure that all reagent and enzymes of the small tubes and vial are recovered. mix by gently inverting until complete dissolution. Avoid bubbles.
- 4. Add 100μL of phosphatase-free water to AMP, agitate until complete dissolution of the powder;
- 5. Add 100µL of phosphatase-free water to IMP powder, agitate too dissolve;
- 6. Add 200μL of phosphatase-free water to lyophilized AMP-DA, do not vortex immediately, leave for 10min to solubilise pellet, vortex vigorously and spin the tube to remove the foam.

VI. Assay of purified or partially purified AMP-DA

- 1. Program plate reader for kinetics absorbance reading every 1min, 37°C;
- Positive control 1. Add 4μL of this AMPDA solution per well in four wells (A1-A4);
- Blank + AMP,4μl + IMP, 4μL
- 3. Add 4μL of AMPDA solution to be characterized to four wells (suggested B1-B4, C1-C4, D1-D5, E1-E4, F1-F4), followed by addition of 200μL of "Reaction mixture";
- **4. Positive control 2.** To assure that AMP-DA activity is not limited by IMPDH, add 200μL of complete reaction mixture to the well A5;
- 5. Insert the plate into the reader pre-heated at 37°C, agitate for 1 min and incubate for 15 min;
- 6. To start the reaction, add 4μ L of AMP solution to the wells of column 3 and 4, shown in red (two others will be used as Blank).
- 7. Add $4\mu L$ of IMP solution to A5 well. Agitate for 1 min and monitor the reaction at 340nm at 37°C for 30 min with data collection every minute.
- **8.** Insert microplate, agitate and monitor the reaction at 340nm at 37°C for 30 min or longer with data collection every minute. Typical results obtained with RBC lysates are shown on Figure 1 and Table 1.
- **9.** To calculate the activity of AMP-DA, paste the data into **Excel table** available at contact@novocib.com upon request or follow the instructions below.

VII. Calculating the activity of AMP-deaminase (U/ml)

- 1. Calculate the absorbance rate per hour for reaction buffers with AMP (ARAMP) and without (AR blank).
- 2. Calculate Mean ARAMP and Mean AR blank
- 3. AMPD activity (U/ml) in well is calculated by the following formula:

Activity (U/mI) = (Mean AR_{AMP} -Mean AR_{Blank})*50/4.9

Where 50 is a dilution factor (4 μ L per well of 200 μ L) and 4.9 is the absorbance of 1mM NADH at 340nm in round-bottom well of Corning microplate Ref. 3797

IMPORTANT: IMPDH activity (0.150U/ml in well) should be always 2-5 times superior to AMPDA activity. If AMP-DA activity is close or comparable to IMPDH activity, dilute AMP-DA sample and repeat the experiment.

Figure 1. Kinetics of IMP formation from AMP catalysed by AMP-DA provided with the kit (4µL per well).

Table 1.

	Blank, 4µL	nk, 4µL Blank, 4µL 4		4μL AMPDA 4μL AMPDA	
Time, min	AMPDA	AMPDA	+ AMP	+ AMP	IMP, A5
0	0,162	0,167	0,18	0,176	0.327
1	0,162	0,166	0,206	0,203	0,62
2	0,162	0,166	0,249	0,245	0,889
3	0,162	0,167	0,301	0,298	1,139
4	0,162	0,167	0,36	0,359	1,373
5	0,162	0,167	0,425	0,425	1,594
6	0,163	0,167	0,493	0,494	1,802
7	0,162	0,167	0,563	0,566	1,997
8	0,162	0,167	0,636	0,64	2,181
9	0,162	0,167	0,71	0,715	2,351
10	0,162	0,167	0,785	0,792	2,507
11	0,162	0,167	0,862	0,869	saturated
12	0,163	0,167	0,939	0,948	saturated
13	0,163	0,168	1,017	1,028	saturated
14	0,163	0,168	1,095	1,109	saturated
15	0,163	0,168	1,176	1,19	saturated
16	0,163	0,168	1,256	1,27	saturated
17	0,163	0,168	1,336	1,352	saturated
18	0,163	0,168	1,418	1,432	saturated
19	0,164	0,168	1,499	1,513	saturated
20	0,163	0,169	1,582	1,595	saturated
21	0,163	0,168	1,664	1,676	saturated
22	0,164	0,168	1,747	1,759	saturated
23	0,164	0,169	1,829	1,842	saturated
24	0,164	0,169	1,912	1,924	saturated
25	0,164	0,169	1,993	2,006	saturated
26	0,164	0,169	2,076	2,087	saturated
27	0,164	0,169	2,154	2,168	saturated
28	0,164	0,169	2,235	2,249	saturated
29	0,164	0,169	2,317	2,331	saturated
30	0,164	0,169	2,394	2,406	saturated
Absorbance rate, AU/min	0,000	0,000	0,077	0,077	0,271
Mean absorbance rate, AU/min	0,000		0,0	0,271	
AMPDA activity in well, U/ml			0,0	0,055	
AMPDA activity in stock solution, U/ml					

VIII. Assay of AMP-deaminase in cell lysates

This protocol was developed with erythrocytes purified from 1mL of peripheral blood. The pellet of PBS-washed packed erythrocytes (from 1ml of blood) was frozen resuspended in 4.5mL of ice-cold dH_20 and sonicated for 1ml on ice (Sonopuls, Bandelin, 20% cycle, 50% power). The sonicated hemolysates (protein concentration 40mg/ml) were used for AMP-DA measurement. The hemolysates can be also prepared by several freeze-thawing of erythrocytes resuspended in water and high-speed centrifugation. Since the efficiency of hemolysis and release of AMP-DA enzyme depends on the method used for RBC disruption, we recommend to use always the same protocol of hemolysate preparation.

IX. Reaction monitoring

- **1.** Program plate reader for kinetics absorbance reading every 1min, 37°C;
- 2. Add 4μL of hemolysates to wells A1, A2, A3 and A4, followed by addition of 200μL of complete "Reaction mixture";
- **3. Positive control 1 (optional).** Add 4μL of prepared AMP-DA solution per well in four wells (A5-A6);
- **4. Positive control 2 (optional).** Add 200μL of complete reaction mixture to the well A7;
- 5. Insert the plate into the reader pre-heated at 37°C, agitate for 1 min and incubate for 15 min;
- 6. To start the reaction, add 4μL of AMP solution to the wells a shown (others will be used as Blank);
- 7. Add 4μ L of IMP solution to A5 well. Agitate for 1 min and monitor the reaction at 340nm at 37°C for 30 min with data collection every minute.

- **8.** Insert microplate, agitate and monitor the reaction at 340nm at 37°C for 1h or longer with data collection every minute. Typical results obtained with RBC lysates are shown on Table 2 / Figure 2.
- **9.** To calculate the activity of AMP-DA, paste the data into **Excel table** available at contact@novocib.com upon request or follow the instructions below.

Table 2.

	•		•				
	Blanc, 4µL	Blanc, 4µL	4µL RBC	4µL RBC	AMPDA,	AMPDA, +	
Time, min	RBC lysate	RBC lysate	lysate +	lysate +	sans AMP	AMP	IMP
	NDC lysale		AMP	AMP	Sai is Aivir		
0	0,781	0,824	0,824	0,852	0,188	0,204	0,578
1	0,783	0,826	0,83	0,858	0,189	0,231	1,295
2	0,783	0,826	0,835	0,862	0,19	0,264	1,909
3	0,784	0,829	0,84	0,868	0,191	0,301	2,427
4	0,785	0,828	0,845	0,873	0,191	0,348	2,827
5	0,787	0,83	0,852	0,88	0,192	0,406	3,103
6	0,787	0,831	0,857	0,886	0,193	0,465	3,268
7	0,789	0,831	0,861	0,89	0,194	0,521	3,334
8	0,789	0,833	0,867	0,895	0,195	0,573	3,395
9	0,791	0,834	0,873	0,901	0,196	0,629	3,422
10	0,79	0,833	0,877	0,905	0,197	0,69	3,446
11	0,792	0,836	0,885	0,912	0,198	0,755	3,446
12	0,792	0,836	0,89	0,917	0,199	0,825	3,446
13	0,793	0,836	0,895	0,923	0,2	0,895	3,446
14	0,794	0,838	0,902	0,929	0,202	0,973	3,446
15	0,794	0,838	0,908	0,935	0,203	1,053	3,446
16	0,793	0,837	0,912	0,939	0,203	1,135	3,446
17	0,795	0,839	0,92	0,946	0,205	1,221	3,446
18	0,796	0,84	0,926	0,953	0,206	1,308	3,446
19	0,796	0,84	0,932	0,959	0,207	1,399	3,446
20	0,796	0,84	0,94	0,967	0,208	1,492	3,446
21	0,797	0,841	0,947	0,974	0,208	1,586	3,446
22	0,798	0,842	0,954	0,981	0,21	1,683	3,446
23	0,798	0,842	0,961	0,988	0,21	1,78	3,446
Absorbance rate per minute	0,0007	0,0008	0,0059	0,0058	0,0010	0,0692	0,5068
Mean absorbance rate per	0.0	204	0.0	200	0.0040	0.0000	0.5000
min	0,001		0,006		0,0010	0,0692	0,5068
NADH formation rate,	8,995		71,43				
µmols/hour/mL	0,8	990	''	,43			
Protein concentration in well,	0.000		0,800				
mg/ml	0,0	JUU	0,8	500			
AMP-DA activity in RBC				20			
lysate, nmol/hour/mg			89	,29			

Figure 2. Kinetics of IMP formation from AMP catalysed by AMP-deaminase from hemolysate (4μL of hemolysate per well, 37°C).

X. Calculating the AMP-DA activity in cell lysate (nmols/hour/mg)

- 1. Calculate the absorbance rate per hour for reaction buffers with AMP (ARAMP) and without (AR blank).
- 2. Calculate Mean ARAMP and Mean AR blank
- 3. Measure the concentration of protein in hemolysates.
- 4. AMP-DA activity is calculated by the following formula:

Activity (nmols/hour/mg of protein) = (Mean AR_{AMP} -Mean AR_{Blank})*10³/4.9 /[protein]

Where 4.9 is the absorbance of 1mM NADH at 340nm in round-bottom well of Corning microplate Ref. 3797 [protein], final protein concentration in well